단단한 강화학습 리처드 서튼 pdf 다운로드를 무료로 제공합니다 인공지능 분야에서 가장 활발하게 연구되고 있는 분야 중 하나인 강화학습은 복잡하고 불확실한 환경과 상호작용하는 학습자에게 주어지는 보상을 최대화하는 수치 계산적 학습 방법이다.
관련 책 pdf 모음
책 소개
이 책이 처음 출간된 1998년 이후로 20년 동안 인공지능 기술은 엄청나게 발전했다. 강화학습을 비롯한 기계학습 기술의 발전은 인공지능의 발전에 큰 동력을 제공해 주었다. 기계학습 기술의 발전에는 컴퓨터의 계산 능력이 눈부시게 향상된 것이 한몫을 했지만, 새로운 이론과 알고리즘의 개발 또한 중요한 역할을 했다. 이러한 변화가 있었음에도 이 책의 2판 작업이 오랜 시간 지체되어 2012년이 되어서야 작업을 시작할 수 있었다. 2판의 목적은 이 책을 처음 출간했을 때와 다르지 않다. 즉, 관련된 모든 분야의 독자들이 강화학습의 핵심 개념과 알고리즘을 쉽고 명료하게 이해할 수 있도록 하는 것이다. 다음과 같은 학습 문제를 생각해 보자. k개의 서로 다른 옵션이나 행동 중 하나를 반복적으로 선택해야 한다. 매 선택 후에는 숫자로 된 보상이 주어진다. 이때 보상을 나타내는 값은 선택된 행동에 따라 결정되는 정상 확률 분포(stationary probability distribution, 시간에 따라 변하지 않는 확률 분포_옮긴이)로부터 얻어진다. 선택의 목적은 일정 기간, 예를 들면 행동을 1,000번 선택하는 기간 또는 1,000개의 시간 간격(time step) 동안 주어지는 보상의 총량에 대한 기댓값을 최대화하는 것이다. 또 다른 합리적인 답변은 상태 A를 한 번 마주쳤고 그에 따른 이득이 0이어서 V(A)의 값을 0으로 추정했다는 사실을 단순히 관찰하는 것이다. 이 답변은 일괄 몬테카를로 방법이 주는 답변이다. 이것이 훈련 데이터에 대한 최소 제곱 오차를 도출하는 답변이라는 점에 주목하라. 사실, 이 답변은 훈련 데이터에 대해 0의 오차를 도출한다. 과다 적합은 제한된 훈련 데이터에 기반하여 많은 자유도를 갖고 함수를 조정하는 모든 함수 근사 방법에서 문제가 된다. 제한된 훈련 데이터에 구속받지 않는 온라인 강화학습에서는 이러한 문제가 덜하지만, 효과적으로 일반화하는 것은 여전히 중요한 이슈다. 과다 적합은 일반적으로 ANN이 갖는 문제이지만, 아주 많은 수의 가중치를 갖는 경향성 때문에 심층 ANN의 경우에는 더 심각한 문제가 된다.
단단한 강화학습 리처드 서튼 pdf
CHAPTER 01 소개 1
1.1 강화학습 2
1.2 예제 5
1.3 강화학습의 구성 요소 7
1.4 한계와 범위 9
1.5 확장된 예제: 틱택토 10
1.6 요약 16
1.7 강화학습의 초기 역사 17
참고문헌 27
PART I 표 형태의 해법
CHAPTER 02 다중 선택 31
2.1 다중 선택 문제 32
2.2 행동 가치 방법 34
2.3 10중 선택 테스트 35
2.4 점증적 구현 38
2.5 비정상 문제의 흔적 40
2.6 긍정적 초깃값 42
2.7 신뢰 상한 행동 선택 44
2.8 경사도 다중 선택 알고리즘 46
2.9 연관 탐색(맥락적 다중 선택) 50
2.10 요약 51
참고문헌 및 역사적 사실 54
CHAPTER 03 유한 마르코프 결정 과정 57
3.1 에이전트-환경 인터페이스 58
3.2 목표와 보상 64
3.3 보상과 에피소드 66
3.4 에피소딕 작업과 연속적인 작업을 위한 통합 표기법 69
3.5 정책과 가치 함수 70
3.6 최적 정책과 최적 가치 함수 76
3.7 최적성과 근사 82
3.8 요약 83
참고문헌 및 역사적 사실 84
CHAPTER 04 동적 프로그래밍 89
4.1 정책 평가(예측) 90
4.2 정책 향상 94
4.3 정책 반복 97
4.4 가치 반복 100
4.5 비동기 동적 프로그래밍 103
4.6 일반화된 정책 반복 104
4.7 동적 프로그래밍의 효율성 106
4.8 요약 107
참고문헌 및 역사적 사실 109
CHAPTER 05 몬테카를로 방법 111
5.1 몬테카를로 예측 112
5.2 몬테카를로 행동 가치 추정 118
5.3 몬테카를로 제어 119
5.4 시작 탐험 없는 몬테카를로 제어 123
5.5 중요도추출법을 통한 비활성 정책 예측 126
5.6 점증적 구현 133
5.7 비활성 몬테카를로 제어 135
5.8 할인을 고려한 중요도추출법 138
5.9 결정 단계별 중요도추출법 139
5.10 요약 141
참고문헌 및 역사적 사실 143
CHAPTER 06 시간차 학습 145
6.1 TD 예측 146
6.2 TD 예측 방법의 좋은점 150
6.3 TD(0)의 최적성 153
6.4 살사: 활성 정책 TD 제어 157
6.5 Q 학습: 비활성 정책 TD 제어 160
6.6 기댓값 살사 162
6.7 최대화 편차 및 이중 학습 163
6.8 게임, 이후상태, 그 밖의 특별한 경우들 166
6.9 요약 168
참고문헌 및 역사적 사실 169
CHAPTER 07 n단계 부트스트랩 171
7.1 n단계 TD 예측 172
7.2 n단계 살사 177
7.3 n단계 비활성 정책 학습 179
7.4 제어 변수가 있는 결정 단계별 방법 181
7.5 중요도추출법을 사용하지 않는 비활성 정책 학습: n단계 트리 보강 알고리즘 184
7.6 통합 알고리즘: n단계 Q(σ) 187
7.7 요약 189
참고문헌 및 역사적 사실 190
CHAPTER 08 표에 기반한 방법을 이용한 계획 및 학습 191
8.1 모델과 계획 192
8.2 다이나: 계획, 행동, 학습의 통합 194
8.3 모델이 틀렸을 때 199
8.4 우선순위가 있는 일괄처리 202
8.5 기댓값 갱신 대 표본 갱신 206
8.6 궤적 표본추출 210
8.7 실시간 동적 프로그래밍 213
8.8 결정 시점에서의 계획 217
8.9 경험적 탐색 219
8.10 주사위 던지기 알고리즘 221
8.11 몬테카를로 트리 탐색 223
8.12 요약 227
8.13 1부 요약: 차원 228
참고문헌 및 역사적 사실 231
PART II 근사적 해법
CHAPTER 09 근사를 이용한 활성 정책 예측 237
9.1 가치 함수 근사 238
9.2 예측 목적(VE) 239
9.3 확률론적 경사도와 준경사도 방법 241
9.4 선형 방법 246
9.5 선형 방법을 위한 특징 만들기 253
9.6 시간 간격 파라미터를 수동으로 선택하기 268
9.7 비선형 함수 근사: 인공 신경망 269
9.8 최소 제곱 TD 275
9.9 메모리 기반 함수 근사 278
9.10 커널 기반 함수 근사 280
9.11 활성 정책 학습에 대한 보다 깊은 관찰: 관심과 강조 282
9.12 요약 285
참고문헌 및 역사적 사실 286
CHAPTER 10 근사를 적용한 활성 정책 제어 293
10.1 에피소딕 준경사도 제어 294
10.2 준경사도 n단계 살사 297
10.3 평균 보상: 연속적 작업을 위한 새로운 문제 설정 300
10.4 할인된 설정에 대한 반대 304
10.5 미분 준경사도 n단계 살사 307
10.6 요약 308
참고문헌 및 역사적 사실 308
CHAPTER 11 근사를 활용한 비활성 정책 방법 311
11.1 준경사도 방법 312
11.2 비활성 정책 발산의 예제 315
11.3 치명적인 삼위일체 320
11.4 선형 가치 함수 기하 구조 322
11.5 벨만 오차에서의 경사도 강하 327
11.6 벨만 오차는 학습할 수 없다 332
11.7 경사도 TD 방법 337
11.8 강한 TD 방법 341
11.9 분산 줄이기 343
11.10 요약 345
참고문헌 및 역사적 사실 346
CHAPTER 12 적격 흔적 349
12.1 λ 이득 350
12.2 TD(λ) 355
12.3 중단된 n단계 λ 이득 방법 359
12.4 다시 갱신하기: 온라인 λ 이득 알고리즘 361
12.5 진정한 온라인 TD(λ) 363
12.6 몬테카를로 학습에서의 더치 흔적 366
12.7 살사(λ) 368
12.8 가변 λ 및 γ 372
12.9 제어 변수가 있는 비활성 정책 흔적 374
12.10 왓킨스의 Q(λ)에서 트리 보강(λ)로 378
12.11 흔적을 이용한 안정적인 비활성 정책 방법 381
12.12 구현 이슈 383
12.13 결론 384
참고문헌 및 역사적 사실 386
CHAPTER 13 정책 경사도 방법 389
13.1 정책 근사 및 정책 근사의 장점 390
13.2 정책 경사도 정리 393
13.3 REINFORCE: 몬테카를로 정책 경사도 395
13.4 기준값이 있는 REINFORCE 399
13.5 행동자-비평자 방법 401
13.6 연속적인 문제에 대한 정책 경사도 403
13.7 연속적 행동을 위한 정책 파라미터화 406
13.8 요약 408
참고문헌 및 역사적 사실 409
PART III 더 깊이 들여다보기
CHAPTER 14 심리학 413
14.1 예측과 제어 414
14.2 고전적 조건화 416
14.3 도구적 조건화 433
14.4 지연된 강화 438
14.5 인지 지도 440
14.6 습관적 행동과 목표 지향적 행동 442
14.7 요약 447
참고문헌 및 역사적 사실 449
CHAPTER 15 신경과학 457
15.1 신경과학 기본 458
15.2 보상 신호, 강화 신호, 가치, 예측 오차 460
15.3 보상 예측 오차 가설 463
15.4 도파민 465
15.5 보상 예측 오차 가설에 대한 실험적 근거 469
15.6 TD 오차/도파민 유사성 473
15.7 신경 행동자-비평자 479
15.8 행동자와 비평자 학습 규칙 482
15.9 쾌락주의 뉴런 488
15.10 집단적 강화학습 490
15.11 뇌에서의 모델 기반 방법 494
15.12 중독 496
15.13 요약 497
참고문헌 및 역사적 사실 501
CHAPTER 16 적용 및 사례 연구 511
16.1 TD-가몬 511
16.2 사무엘의 체커 선수 518
16.3 왓슨의 이중 내기 522
16.4 메모리 제어 최적화 526
16.5 인간 수준의 비디오 게임 실력 531
16.6 바둑 게임에 통달하다 539
16.7 개인화된 웹 서비스 550
16.8 열 상승 554
CHAPTER 17 프론티어 559
17.1 일반적인 가치 함수 및 보조 작업 559
17.2 옵션을 통한 시간적 추상화 562
17.3 관측과 상태 565
17.4 보상 신호의 설계 572
17.5 남아 있는 이슈들 576
17.6 인공지능의 미래 580
참고문헌 및 역사적 사실 584
참고문헌 588
찾아보기 626