인공지능을 위한 수학 이시카와 아키히코 pdf 다운로드를 무료로 제공합니다 머신러닝·딥러닝의 출발점, 수학의 기초부터 튼튼하게! 이 책은 처음부터 끝까지 인공지능(머신러닝, 딥러닝)에 사용하는 수학적 개념을 재조명하는 데 집중하고 있습니다
관련 교재 pdf 모음
책 소개
인공지능 프로그래밍에 모든 수학이 사용되는 것은 아닙니다. 이 책은 실제로 인공지능에 쓰이는 꼭 필요한 수학만 기초부터 탄탄하게 다루고 있습니다. 이어서 대표적인 인공지능 알고리즘에 수학이 어떻게 활용되는지 하나하나 살펴봅니다. 인공지능에 관심이 있는 분이라면 누구나 이 책을 출발점으로 삼아 그동안 어렵다고 느꼈던 머신러닝, 딥러닝의 원리와 수식을 다시 바라보고 만끽할 수 있을 것입니다. 이 책에서 코드를 다루지는 않지만, 응용편(5, 6, 7장) 내용은 소스 코드를 내려받아 직접 실습해 보면서 확인할 수 있습니다. 일본어 원서 기준으로 만들어진 소스 코드와 학습 데이터를 이 책의 역자인 현업 AI/ML 개발자가 번역서 기준으로 다시 재구성하였습니다. 지면 관계상 실습 환경을 구성하기 위한 PC 설정 방법 등은 이 책에서 다루고 있지 않습니다. 다만, 다음의 번역서 기준 소스 코드 저장소에 간단한 환경 구성 방법을 안내해 두었으니 참고하기 바랍니다.
인공지능을 위한 수학 이시카와 pdf
머리말
옮긴이의 글
베타리더 후기
이 책을 읽는 방법
기본편 | 인공지능 프로그래밍에 쓰이는 수학
CHAPTER 01 기초 수학
1-1 변수와 상수
1-2 1차식과 2차식
1-3 함수의 개념
1-4 제곱근
1-5 거듭제곱과 거듭제곱근
1-6 지수함수와 로그함수
1-7 자연로그
1-8 시그모이드 함수
1-9 삼각함수
1-10 절댓값과 유클리드 거리
1-11 수열
1-12 집합과 원소
CHAPTER 02 미분
2-1 극한
2-2 미분의 기초
2-3 상미분과 편미분
2-4 그래프 그리기
2-5 함수의 최댓값과 최솟값
2-6 초등함수와 합성함수의 미분, 그리고 곱의 법칙
2-7 특수 함수의 미분
CHAPTER 03 선형대수
3-1 벡터
3-2 덧셈과 뺄셈, 그리고 스칼라배
3-3 유향선분
3-4 내적
3-5 직교 조건
3-6 법선벡터
3-7 벡터의 노름
3-8 코사인 유사도
3-9 행렬의 덧셈과 뺄셈
3-10 행렬의 곱셈
3-11 역행렬
3-12 선형 변환
3-13 고윳값과 고유벡터
CHAPTER 04 확률과 통계
4-1 확률
4-2 확률변수와 확률분포
4-3 결합확률과 조건부확률
4-4 기댓값
4-5 평균과 분산, 그리고 공분산
4-6 상관계수
4-7 최대가능도추정
응용편 | 인공지능 알고리즘에 응용하는 수학
CHAPTER 05 선형회귀
5-1 회귀 모델로 주택 가격 추정하기
5-2 데이터 세트 ‘Boston Housing Dataset’
5-3 선형회귀 모델
5-4 최소제곱법으로 파라미터 도출하기
5-5 정규화로 과학습 줄이기
5-6 완성된 모델 평가하기
CHAPTER 06 자연어 처리
6-1 자연어 처리로 문서의 카테고리 알아맞히기
6-2 카테고리별 데이터 세트
6-3 자연어 처리의 작동 원리
6-4 문장에서 품사 분석하기
6-5 단어 필터링하기
6-6 문서를 단어 벡터로 변환하기
6-7 단어 벡터에 가중치 주기
6-8 문서 분류하기
6-9 완성된 모델 평가하기
CHAPTER 07 이미지 인식
7-1 딥러닝으로 손글씨 인식하기
7-2 데이터 세트 ‘MNIST’
7-3 신경망이란? – 기초
7-4 신경망이란? – 심화
7-5 심층 신경망이란?
7-6 순전파
7-7 손실 함수
7-8 경사하강법 사용하기
7-9 오차역전파법 사용하기
7-10 완성된 모델 평가하기
맺음말
참고자료
색인